Exclusive π^o and η electro-production at high Q² in the resonance region

Mark Jones Jefferson Lab

NSTAR 2011 Jefferson Lab

Baryon form factors

- Knowledge of N^{\star} form factors complements nucleon FF
 - $\Box P_{33}(1232)$ I = 3/2 J = 3/2 Decays to πN with 99% BR
 - Can be excited by M1, E2 and S1 multipoles
 - M1 dominates
 - $\Box S_{11}(1535)$ Negative parity partner I = 1/2 J = 1/2 Decays to ηN with 55% BR
 - $A_{1/2}$ helicity amplitude dominates over $S_{1/2}$

Measure Q² dependence of baryon form factor data

Map out the spatial densities of the nucleon
Address the role of meson cloud
Study the transition from meson/baryon degrees of freedom to the asymptotic regime

Previous $p(e, e'p)\pi^{\circ}$ **Experiments**

Magnetic FF, G_{M}^{*} , for $P_{33}(1232)$

E2/M1 for P₃₃(1232)

Two frameworks used to extract multipoles from experimental data

- Fixed-t dispersion relations
- •Unitary Isobar Model (UIM)

Jefferson Lab

<u>I. G. Aznauryan</u>, <u>V. D. Burkert</u>, the <u>CLAS Collaboration</u> Phys. Rev. C80:055203,2009

Previous $p(e, e'p)\pi^{\circ}$ **Experiments**

Magnetic FF, G_{M}^{*} , for $P_{33}(1232)$

E2/M1 for P₃₃(1232)

Previous $p(e, e'p)\eta$ **Experiments**

Helicity Amplitude $A_{1/2}$ for S_{11} (1535)

At very large Q^2 expect $Q^3A_{1/2}$ to be a constant.

New Hall C data •cross sections for W = 1.50 to 1.59 GeV •Full θ^* and ϕ^* at Q² = 5.7 GeV², •partial coverage at Q² = 7.0 GeV²

Hall C Experiment 00-102

Identifying exclusive channels

Identifying exclusive channels

Identifying exclusive channels

Meson Production in yp center of mass

Elimination of elastic radiated process

Elimination of elastic radiated process

Elimination of elastic radiated process

π^{o} production c.m. cross section

Truncated Multipole Analysis

Jefferson Lab

•Large M1- and EO+ so M1 dominance is not viable

- Need to use cross section data in global analysis
- framework like UIM to reliably extract multipoles

Δ Magnetic Form factor

Multipion subtraction in η production

η production cross section

Jefferson Lab

C SA

η production cross section

Fit Coefficients

Fit Coefficients

 $\frac{d\sigma}{d\Omega^*} = A + B\,\cos\theta^* + C\,\cos^2\theta^* + D\,\sin\theta^*\cos\phi^* + E\,\cos\theta^*\sin\theta^*\cos\phi^* + F\,\sin^2\theta^*\cos2\phi^*$

η total cross section

Simultaneous fit both data sets with relativistic Breit-Wigner.

 Q^2 dependence of $A_{1/2}$ for S_{11}

Summary

□Measured $p(e, e'p)\pi^{\circ}$ > Full Θ_{cm} and ϕ_{cm} for W = 1.08 to 1.4 GeV at Q² = 6.4 GeV² > Partial Θ_{cm} and ϕ_{cm} for W = 1.08 to 1.4 GeV Q² = 7.7 GeV² > Determine G*_M, E2/M1 in global UIM analysis > A. N. Villano et al, Phys.Rev.C80:035203,2009 ArXiv:0906.2839v2 has UIM analysis results

□Measured $p(e, e'p)\eta$ > Full Θ_{cm} and ϕ_{cm} for W = 1.50 to 1.59 GeV at Q² = 5.7 GeV² > Partial Θ_{cm} and ϕ_{cm} for W = 1.50 to 1.59 GeV at Q² = 7.0 GeV² > Determine A_{1/2} for S₁₁ > M. Dalton et al, Phys.Rev.C80:015205,2009

Backup slides

Total cross section

Fit total cross section with Breit-Wigner + background Assume M1 dominance and extract G_M

Comparison to UIM extraction

Comparison to UIM extraction

🍘 📢

Comparison to UIM extraction

Magnetic FF, G_{M}^{*} , for $P_{33}(1232)$

In Large N_c limit with GPDs E^u and E^d from fits to proton and neutron data

