Exclusive π^{0} and η electro-production at high $\mathbf{Q}^{\mathbf{2}}$ in the resonance region

Mark Jones
Jefferson Lab

NSTAR 2011
Jefferson Lab

Baryon form factors

- Knowledge of N^{\star} form factors complements nucleon FF
$\square P_{33}(1232) I=3 / 2 \mathrm{~J}=3 / 2$ Decays to $\pi \mathrm{N}$ with $99 \% \mathrm{BR}$
- Can be excited by M1, E2 and S1 multipoles
- M1 dominates
$\square S_{11}(1535)$ Negative parity partner $I=1 / 2 \quad J=1 / 2$ Decays to ηN with $55 \% B R$
- $\mathrm{A}_{1 / 2}$ helicity amplitude dominates over $\mathrm{S}_{1 / 2}$
- Measure Q^{2} dependence of baryon form factor data
-Map out the spatial densities of the nucleon
-Address the role of meson cloud
\square Study the transition from meson/baryon degrees of freedom to the asymptotic regime

Previous $p\left(e, e^{\prime} p\right) \pi^{\circ}$ Experiments

Magnetic FF, $\mathrm{G}^{*}{ }_{\mathrm{M}}$, for $\mathrm{P}_{33}(1232)$
$E 2 / M 1$ for $P_{33}(1232)$

Two frameworks used to extract multipoles from experimental data

- Fixed-t dispersion relations
- Unitary Isobar Model (UIM)
I. G. Aznauryan, V. D. Burkert, the CLAS Collaboration Phys.Rev.C80:055203,2009

Previous $p\left(e, e^{\prime} p\right) \pi^{\circ}$ Experiments

Magnetic FF, $\mathrm{G}^{*}{ }_{\mathrm{M}}$, for $\mathrm{P}_{33}(1232)$
E2/M1 for $\mathrm{P}_{33}(1232)$

New Hall C data

- cross sections for $\mathrm{W}=1.08$ to 1.4 GeV
- Full θ^{*} and ϕ^{*} at $\mathrm{Q}^{2}=6.4 \mathrm{GeV}^{2}$, partial at $\mathrm{Q}^{2}=7.7 \mathrm{GeV}^{2}$

Previous $p\left(e, e^{\prime} p\right) \eta$ Experiments

Helicity Amplitude $\mathrm{A}_{1 / 2}$ for S_{11} (1535)

At very large Q^{2} expect $\mathrm{Q}^{3} \mathrm{~A}_{1 / 2}$ to be a constant.

New Hall C data

- cross sections for $\mathrm{W}=1.50$ to 1.59 GeV
- Full θ^{*} and ϕ^{*} at $\mathrm{Q}^{2}=5.7 \mathrm{GeV}^{2}$,
- partial coverage at $\mathrm{Q}^{2}=7.0 \mathrm{GeV}^{2}$

Hall C Experiment 00-102

SOS detected electrons

$$
\begin{aligned}
& \mathrm{Q}^{2}=6.4 \Theta_{\mathrm{SOS}}=47.5 \\
& \mathrm{Q}^{2}=7.7 \Theta_{\mathrm{SOS}}=70.0
\end{aligned}
$$

Q2	$\Theta_{\text {HMS }}$	$P_{\text {HMS }}$
6.4	11.2 to 24	2.3 to 4.7
7.7	11.2 to 14	3.2 to 4.7

Identifying exclusive channels

Identifying exclusive channels

Identifying exclusive channels

Meson Production in γp center of mass

$$
\frac{d \sigma}{d \square^{\star}}=\sigma_{T}+\epsilon \sigma_{L}+\epsilon \sigma_{T T} \cos 2 \phi^{\star}+\sqrt{2 \epsilon(1+\epsilon)} \sigma_{L T} \cos \phi^{\star}
$$

Elimination of elastic radiated process

$\mathrm{Q}^{2}=6.4 \mathrm{GeV}^{2}$

Elimination of elastic radiated process

Elimination of elastic radiated process

$$
\mathrm{Q}^{2}=6.4 \mathrm{GeV}^{2}
$$

$$
\mathrm{M}_{\mathrm{x}}^{2}\left[\left(\mathrm{GeV} / \mathrm{c}^{2}\right)^{2}\right]
$$

π^{0} production c.m. cross section

$$
\begin{aligned}
\frac{d \sigma}{d^{\star}} & =A_{o}+A_{1} \cos \theta^{\star}+A_{2} \cos ^{2} \theta^{\star}+\epsilon B_{o} \cos 2 \phi^{\star} \sin ^{2} \theta^{\star} \\
& +\sqrt{2 \epsilon(1+\epsilon)} \cos \phi^{\star}\left(C_{o}+C_{1} \cos \theta^{\star}\right) \sin \theta^{\star}
\end{aligned}
$$

Truncated Multipole Analysis

$\mathrm{Q}^{2}=6.4 \mathrm{GeV}^{2}$

-Large M1- and E0+ so M1 dominance is not viable

- Need to use cross section data in global analysis

Δ Magnetic Form factor

A. N. Villano et al Phys.Rev.C80:035203 ArXiv:0906.2839v2 has UIM analysis results

P33 E2/M1

A. N. Villano et al Phys.Rev.C80:035203

Multipion subtraction in η production

$\mathrm{W}=1.5 \mathrm{GeV}$

η production cross section

$Q^{2}=5.7$
data

$\stackrel{d \sigma}{d \Omega^{*}}=A+B \cos \theta^{*}+C \cos ^{2} \theta^{*}+D \sin \theta^{*} \cos \phi^{*}+E \cos \theta^{*} \sin \theta^{*} \cos \phi^{*}+F \sin ^{2} \theta^{*} \cos 2 \phi^{*}$

η production cross section

$Q^{2}=7.0$ data
Fit with
$\frac{d \sigma}{d \square^{\star}}=A_{o}+A_{1} \cos \theta^{\star}$

Fit Coefficients

Fit Coefficients

$\begin{gathered}d \sigma \\ d \Omega^{*}\end{gathered}=A+B \cos \theta^{*}+C \cos ^{2} \theta^{*}+D \sin \theta^{*} \cos \phi^{*}+E \cos \theta^{*} \sin \theta^{*} \cos \phi^{*}+F \sin ^{2} \theta^{*} \cos 2 \phi^{*}$

η total cross section

Simultaneous fit both data sets with relativistic Breit-Wigner.

Q^{2} dependence of $A_{1 / 2}$ for S_{11}

Summary

\square Measured $p\left(e, e^{\prime} p\right) \pi^{\circ}$
$>$ Full Θ_{cm} and ϕ_{cm} for $\mathrm{W}=1.08$ to 1.4 GeV at $\mathrm{Q}^{2}=6.4 \mathrm{GeV}^{2}$
$>$ Partial Θ_{cm} and ϕ_{cm} for $\mathrm{W}=1.08$ to $1.4 \mathrm{GeV}^{2}=7.7 \mathrm{GeV}^{2}$
$>$ Determine $\mathrm{G}^{*}{ }_{\mathrm{M}}, \mathrm{E} 2 / \mathrm{M} 1$ in global UIM analysis
>A. N. Villano et al, Phys.Rev.C80:035203,2009
ArXiv:0906.2839v2 has UIM analysis results

DMeasured $p\left(e, e^{\prime} p\right) \eta$
$>$ Full Θ_{cm} and ϕ_{cm} for $\mathrm{W}=1.50$ to 1.59 GeV at $\mathrm{Q}^{2}=5.7 \mathrm{GeV}^{2}$
$>$ Partial Θ_{cm} and ϕ_{cm} for $\mathrm{W}=1.50$ to 1.59 GeV at $\mathrm{Q}^{2}=7.0 \mathrm{GeV}^{2}$
> Determine $\mathrm{A}_{1 / 2}$ for S_{11}
$>$ M. Dalton et al, Phys.Rev.C80:015205,2009

Backup slides

Total cross section

$$
\mathrm{Q}^{2}=6.4 \mathrm{GeV}^{2}
$$

$\mathrm{Q}^{2}=7.7 \mathrm{GeV}^{2}$

Fit total cross section with Breit-Wigner + background Assume M1 dominance and extract G_{M}

Comparison to UIM extraction

Comparison to UIM extraction

Comparison to UIM extraction

Magnetic FF, G ${ }_{M}^{*}$, for $\mathrm{P}_{33}(1232)$

In Large N_{c} limit with GPDs E^{u} and E^{d} from fits to proton and neutron data

$$
G_{M}^{*}(t)=\frac{G_{M}^{*}(0)}{\kappa_{V}} \int_{-1}^{+1} d x\left\{E^{u}(x, \xi, t)-E^{d}(x, \xi, t)\right\}=\frac{G_{M}^{*}(0)}{\kappa_{V}}\left\{F_{2}^{p}(t)-F_{2}^{n}(t)\right\}
$$

